Papers
Topics
Authors
Recent
2000 character limit reached

Observations Meet Actions: Learning Control-Sufficient Representations for Robust Policy Generalization (2507.19437v1)

Published 25 Jul 2025 in cs.LG

Abstract: Capturing latent variations ("contexts") is key to deploying reinforcement-learning (RL) agents beyond their training regime. We recast context-based RL as a dual inference-control problem and formally characterize two properties and their hierarchy: observation sufficiency (preserving all predictive information) and control sufficiency (retaining decision-making relevant information). Exploiting this dichotomy, we derive a contextual evidence lower bound(ELBO)-style objective that cleanly separates representation learning from policy learning and optimizes it with Bottlenecked Contextual Policy Optimization (BCPO), an algorithm that places a variational information-bottleneck encoder in front of any off-policy policy learner. On standard continuous-control benchmarks with shifting physical parameters, BCPO matches or surpasses other baselines while using fewer samples and retaining performance far outside the training regime. The framework unifies theory, diagnostics, and practice for context-based RL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.