Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reconstruction of Sparse Urban Wireless Signals via Group Equivariant Non-Expansive Operators (2507.19349v1)

Published 25 Jul 2025 in cs.LG and cs.NI

Abstract: In emerging communication systems such as sixth generation (6G) wireless networks, efficient resource management and service delivery rely on accurate knowledge of spatially-varying quantities like signal-to-interference-noise ratio (SINR) maps, which are costly to acquire at high resolution. This work explores the reconstruction of such spatial signals from sparse measurements using Group Equivariant Non-Expansive Operators (GENEOs), offering a low-complexity alternative to traditional neural networks. The concept of GENEO, which originated in topological data analysis (TDA), is a mathematical tool used in machine learning to represent agents modelled as functional operators acting on data while incorporating application-specific invariances. Leveraging these invariances reduces the number of parameters with respect to traditional neural networks and mitigates data scarcity by enforcing known algebraic and geometric constraints that reflect symmetries in the agents' actions. In this paper, we introduce a novel GENEO-based approach for SINR map reconstruction in urban wireless communication networks using extremely sparse sampling. We demonstrate that this mathematical framework achieves competitive performance compared to established methods. Our evaluation, conducted using both statistical and TDA metrics, highlights the advantages of our approach in accurately reconstructing spatial signals under severe data limitations on the number of samples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube