Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Grafting: A Mechanism for Optimizing AI Model Deployment in Resource-Constrained Environments (2507.19261v1)

Published 25 Jul 2025 in cs.AI, cs.LG, and cs.PF

Abstract: The increasing adoption of AI has led to larger, more complex models with numerous parameters that require substantial computing power -- resources often unavailable in many real-world application scenarios. Our paper addresses this challenge by introducing knowledge grafting, a novel mechanism that optimizes AI models for resource-constrained environments by transferring selected features (the scion) from a large donor model to a smaller rootstock model. The approach achieves an 88.54% reduction in model size (from 64.39 MB to 7.38 MB), while improving generalization capability of the model. Our new rootstock model achieves 89.97% validation accuracy (vs. donor's 87.47%), maintains lower validation loss (0.2976 vs. 0.5068), and performs exceptionally well on unseen test data with 90.45% accuracy. It addresses the typical size vs performance trade-off, and enables deployment of AI frameworks on resource-constrained devices with enhanced performance. We have tested our approach on an agricultural weed detection scenario, however, it can be extended across various edge computing scenarios, potentially accelerating AI adoption in areas with limited hardware/software support -- by mirroring in a similar manner the horticultural grafting enables productive cultivation in challenging agri-based environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.