2000 character limit reached
Learning electromagnetic fields based on finite element basis functions (2507.19255v1)
Published 25 Jul 2025 in cs.CE
Abstract: Parametric surrogate models of electric machines are widely used for efficient design optimization and operational monitoring. Addressing geometry variations, spline-based computer-aided design representations play a pivotal role. In this study, we propose a novel approach that combines isogeometric analysis, proper orthogonal decomposition and deep learning to enable rapid and physically consistent predictions by directly learning spline basis coefficients. The effectiveness of this method is demonstrated using a parametric nonlinear magnetostatic model of a permanent magnet synchronous machine.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.