SelfRACG: Enabling LLMs to Self-Express and Retrieve for Code Generation (2507.19033v1)
Abstract: Existing retrieval-augmented code generation (RACG) methods typically use an external retrieval module to fetch semantically similar code snippets used for generating subsequent fragments. However, even for consecutive code fragments, the content often diverges due to logical progression, resulting in a content gap. This gap undermines the performance of current RACG methods, as \textit{external} retrieval modules based on content matching fail to infer the specific information need of LLMs to generate the next code fragment. Therefore, we propose \textbf{SelfRACG}, a novel paradigm that enables LLMs to \textbf{Self}-express their information needs to enhance \textbf{RACG}. Specifically, SelfRACG includes an information need expression module and a two-stage information need-guided training strategy, which encourages LLMs to express their information need. Extensive experiments demonstrate that SelfRACG can retrieve external knowledge that better aligns with the LLM's own information needs, resulting in superior generation performance compared to vanilla RACG.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.