Papers
Topics
Authors
Recent
2000 character limit reached

ProGMLP: A Progressive Framework for GNN-to-MLP Knowledge Distillation with Efficient Trade-offs (2507.19031v1)

Published 25 Jul 2025 in cs.LG

Abstract: GNN-to-MLP (G2M) methods have emerged as a promising approach to accelerate Graph Neural Networks (GNNs) by distilling their knowledge into simpler Multi-Layer Perceptrons (MLPs). These methods bridge the gap between the expressive power of GNNs and the computational efficiency of MLPs, making them well-suited for resource-constrained environments. However, existing G2M methods are limited by their inability to flexibly adjust inference cost and accuracy dynamically, a critical requirement for real-world applications where computational resources and time constraints can vary significantly. To address this, we introduce a Progressive framework designed to offer flexible and on-demand trade-offs between inference cost and accuracy for GNN-to-MLP knowledge distillation (ProGMLP). ProGMLP employs a Progressive Training Structure (PTS), where multiple MLP students are trained in sequence, each building on the previous one. Furthermore, ProGMLP incorporates Progressive Knowledge Distillation (PKD) to iteratively refine the distillation process from GNNs to MLPs, and Progressive Mixup Augmentation (PMA) to enhance generalization by progressively generating harder mixed samples. Our approach is validated through comprehensive experiments on eight real-world graph datasets, demonstrating that ProGMLP maintains high accuracy while dynamically adapting to varying runtime scenarios, making it highly effective for deployment in diverse application settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com