MetaMorph -- A Metamodelling Approach For Robot Morphology (2507.18820v1)
Abstract: Robot appearance crucially shapes Human-Robot Interaction (HRI) but is typically described via broad categories like anthropomorphic, zoomorphic, or technical. More precise approaches focus almost exclusively on anthropomorphic features, which fail to classify robots across all types, limiting the ability to draw meaningful connections between robot design and its effect on interaction. In response, we present MetaMorph, a comprehensive framework for classifying robot morphology. Using a metamodeling approach, MetaMorph was synthesized from 222 robots in the IEEE Robots Guide, offering a structured method for comparing visual features. This model allows researchers to assess the visual distances between robot models and explore optimal design traits tailored to different tasks and contexts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.