Papers
Topics
Authors
Recent
2000 character limit reached

Towards Scalable Spatial Intelligence via 2D-to-3D Data Lifting (2507.18678v1)

Published 24 Jul 2025 in cs.CV and cs.AI

Abstract: Spatial intelligence is emerging as a transformative frontier in AI, yet it remains constrained by the scarcity of large-scale 3D datasets. Unlike the abundant 2D imagery, acquiring 3D data typically requires specialized sensors and laborious annotation. In this work, we present a scalable pipeline that converts single-view images into comprehensive, scale- and appearance-realistic 3D representations - including point clouds, camera poses, depth maps, and pseudo-RGBD - via integrated depth estimation, camera calibration, and scale calibration. Our method bridges the gap between the vast repository of imagery and the increasing demand for spatial scene understanding. By automatically generating authentic, scale-aware 3D data from images, we significantly reduce data collection costs and open new avenues for advancing spatial intelligence. We release two generated spatial datasets, i.e., COCO-3D and Objects365-v2-3D, and demonstrate through extensive experiments that our generated data can benefit various 3D tasks, ranging from fundamental perception to MLLM-based reasoning. These results validate our pipeline as an effective solution for developing AI systems capable of perceiving, understanding, and interacting with physical environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.