Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advancing Vision-based Human Action Recognition: Exploring Vision-Language CLIP Model for Generalisation in Domain-Independent Tasks (2507.18675v1)

Published 24 Jul 2025 in cs.CV and cs.LG

Abstract: Human action recognition plays a critical role in healthcare and medicine, supporting applications such as patient behavior monitoring, fall detection, surgical robot supervision, and procedural skill assessment. While traditional models like CNNs and RNNs have achieved moderate success, they often struggle to generalize across diverse and complex actions. Recent advancements in vision-LLMs, especially the transformer-based CLIP model, offer promising capabilities for generalizing action recognition from video data. In this work, we evaluate CLIP on the UCF-101 dataset and systematically analyze its performance under three masking strategies: (1) percentage-based and shape-based black masking at 10%, 30%, and 50%, (2) feature-specific masking to suppress bias-inducing elements, and (3) isolation masking that retains only class-specific regions. Our results reveal that CLIP exhibits inconsistent behavior and frequent misclassifications, particularly when essential visual cues are obscured. To overcome these limitations, we propose incorporating class-specific noise, learned via a custom loss function, to reinforce attention to class-defining features. This enhancement improves classification accuracy and model confidence while reducing bias. We conclude with a discussion on the challenges of applying such models in clinical domains and outline directions for future work to improve generalizability across domain-independent healthcare scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: