Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A 3D Cross-modal Keypoint Descriptor for MR-US Matching and Registration (2507.18551v1)

Published 24 Jul 2025 in cs.CV

Abstract: Intraoperative registration of real-time ultrasound (iUS) to preoperative Magnetic Resonance Imaging (MRI) remains an unsolved problem due to severe modality-specific differences in appearance, resolution, and field-of-view. To address this, we propose a novel 3D cross-modal keypoint descriptor for MRI-iUS matching and registration. Our approach employs a patient-specific matching-by-synthesis approach, generating synthetic iUS volumes from preoperative MRI. This enables supervised contrastive training to learn a shared descriptor space. A probabilistic keypoint detection strategy is then employed to identify anatomically salient and modality-consistent locations. During training, a curriculum-based triplet loss with dynamic hard negative mining is used to learn descriptors that are i) robust to iUS artifacts such as speckle noise and limited coverage, and ii) rotation-invariant . At inference, the method detects keypoints in MR and real iUS images and identifies sparse matches, which are then used to perform rigid registration. Our approach is evaluated using 3D MRI-iUS pairs from the ReMIND dataset. Experiments show that our approach outperforms state-of-the-art keypoint matching methods across 11 patients, with an average precision of $69.8\%$. For image registration, our method achieves a competitive mean Target Registration Error of 2.39 mm on the ReMIND2Reg benchmark. Compared to existing iUS-MR registration approach, our framework is interpretable, requires no manual initialization, and shows robustness to iUS field-of-view variation. Code is available at https://github.com/morozovdd/CrossKEY.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: