Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Price equation reveals a universal force-metric-bias law of algorithmic learning and natural selection (2507.18549v1)

Published 24 Jul 2025 in cs.LG and q-bio.PE

Abstract: Diverse learning algorithms, optimization methods, and natural selection share a common mathematical structure, despite their apparent differences. Here I show that a simple notational partitioning of change by the Price equation reveals a universal force-metric-bias (FMB) law: $\Delta\mathbf{\theta} = \mathbf{M}\,\mathbf{f} + \mathbf{b} + \mathbf{\xi}$. The force $\mathbf{f}$ drives improvement in parameters, $\Delta\mathbf{\theta}$, through the covariance between the parameters and performance. The metric $\mathbf{M}$ rescales movement by inverse curvature. The bias $\mathbf{b}$ adds momentum or changes in the frame of reference. The noise $\mathbf{\xi}$ enables exploration. This framework unifies natural selection, Bayesian updating, Newton's method, stochastic gradient descent, stochastic Langevin dynamics, Adam optimization, and most other algorithms as special cases of the same underlying process. The Price equation also reveals why Fisher information, Kullback-Leibler divergence, and d'Alembert's principle arise naturally in learning dynamics. By exposing this common structure, the FMB law provides a principled foundation for understanding, comparing, and designing learning algorithms across disciplines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube