Papers
Topics
Authors
Recent
2000 character limit reached

HumanMaterial: Human Material Estimation from a Single Image via Progressive Training (2507.18385v1)

Published 24 Jul 2025 in cs.CV

Abstract: Full-body Human inverse rendering based on physically-based rendering aims to acquire high-quality materials, which helps achieve photo-realistic rendering under arbitrary illuminations. This task requires estimating multiple material maps and usually relies on the constraint of rendering result. The absence of constraints on the material maps makes inverse rendering an ill-posed task. Previous works alleviated this problem by building material dataset for training, but their simplified material data and rendering equation lead to rendering results with limited realism, especially that of skin. To further alleviate this problem, we construct a higher-quality dataset (OpenHumanBRDF) based on scanned real data and statistical material data. In addition to the normal, diffuse albedo, roughness, specular albedo, we produce displacement and subsurface scattering to enhance the realism of rendering results, especially for the skin. With the increase in prediction tasks for more materials, using an end-to-end model as in the previous work struggles to balance the importance among various material maps, and leads to model underfitting. Therefore, we design a model (HumanMaterial) with progressive training strategy to make full use of the supervision information of the material maps and improve the performance of material estimation. HumanMaterial first obtain the initial material results via three prior models, and then refine the results by a finetuning model. Prior models estimate different material maps, and each map has different significance for rendering results. Thus, we design a Controlled PBR Rendering (CPR) loss, which enhances the importance of the materials to be optimized during the training of prior models. Extensive experiments on OpenHumanBRDF dataset and real data demonstrate that our method achieves state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.