Papers
Topics
Authors
Recent
2000 character limit reached

Talking to...uh...um...Machines: The Impact of Disfluent Speech Agents on Partner Models and Perspective Taking (2507.18315v1)

Published 24 Jul 2025 in cs.HC

Abstract: Speech disfluencies play a role in perspective-taking and audience design in human-human communication (HHC), but little is known about their impact in human-machine dialogue (HMD). In an online Namer-Matcher task, sixty-one participants interacted with a speech agent using either fluent or disfluent speech. Participants completed a partner-modelling questionnaire (PMQ) both before and after the task. Post-interaction evaluations indicated that participants perceived the disfluent agent as more competent, despite no significant differences in pre-task ratings. However, no notable differences were observed in assessments of conversational flexibility or human-likeness. Our findings also reveal evidence of egocentric and allocentric language production when participants interact with speech agents. Interaction with disfluent speech agents appears to increase egocentric communication in comparison to fluent agents. Although the wide credibility intervals mean this effect is not clear-cut. We discuss potential interpretations of this finding, focusing on how disfluencies may impact partner models and language production in HMD.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.