Papers
Topics
Authors
Recent
2000 character limit reached

Policy Disruption in Reinforcement Learning:Adversarial Attack with Large Language Models and Critical State Identification (2507.18113v1)

Published 24 Jul 2025 in cs.LG

Abstract: Reinforcement learning (RL) has achieved remarkable success in fields like robotics and autonomous driving, but adversarial attacks designed to mislead RL systems remain challenging. Existing approaches often rely on modifying the environment or policy, limiting their practicality. This paper proposes an adversarial attack method in which existing agents in the environment guide the target policy to output suboptimal actions without altering the environment. We propose a reward iteration optimization framework that leverages LLMs to generate adversarial rewards explicitly tailored to the vulnerabilities of the target agent, thereby enhancing the effectiveness of inducing the target agent toward suboptimal decision-making. Additionally, a critical state identification algorithm is designed to pinpoint the target agent's most vulnerable states, where suboptimal behavior from the victim leads to significant degradation in overall performance. Experimental results in diverse environments demonstrate the superiority of our method over existing approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.