Papers
Topics
Authors
Recent
2000 character limit reached

XStacking: Explanation-Guided Stacked Ensemble Learning (2507.17650v1)

Published 23 Jul 2025 in cs.LG

Abstract: Ensemble Machine Learning (EML) techniques, especially stacking, have been shown to improve predictive performance by combining multiple base models. However, they are often criticized for their lack of interpretability. In this paper, we introduce XStacking, an effective and inherently explainable framework that addresses this limitation by integrating dynamic feature transformation with model-agnostic Shapley additive explanations. This enables stacked models to retain their predictive accuracy while becoming inherently explainable. We demonstrate the effectiveness of the framework on 29 datasets, achieving improvements in both the predictive effectiveness of the learning space and the interpretability of the resulting models. XStacking offers a practical and scalable solution for responsible ML.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.