Parametric Integration with Neural Integral Operators
Abstract: Real-time rendering imposes strict limitations on the sampling budget for light transport simulation, often resulting in noisy images. However, denoisers have demonstrated that it is possible to produce noise-free images through filtering. We enhance image quality by removing noise before material shading, rather than filtering already shaded noisy images. This approach allows for material-agnostic denoising (MAD) and leverages machine learning by approximating the light transport integral operator with a neural network, effectively performing parametric integration with neural operators. Our method operates in real-time, requires data from only a single frame, seamlessly integrates with existing denoisers and temporal anti-aliasing techniques, and is efficient to train. Additionally, it is straightforward to incorporate with physically based rendering algorithms.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.