Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rethinking VAE: From Continuous to Discrete Representations Without Probabilistic Assumptions (2507.17255v1)

Published 23 Jul 2025 in cs.LG

Abstract: This paper explores the generative capabilities of Autoencoders (AEs) and establishes connections between Variational Autoencoders (VAEs) and Vector Quantized-Variational Autoencoders (VQ-VAEs) through a reformulated training framework. We demonstrate that AEs exhibit generative potential via latent space interpolation and perturbation, albeit limited by undefined regions in the encoding space. To address this, we propose a new VAE-like training method that introduces clustering centers to enhance data compactness and ensure well-defined latent spaces without relying on traditional KL divergence or reparameterization techniques. Experimental results on MNIST, CelebA, and FashionMNIST datasets show smooth interpolative transitions, though blurriness persists. Extending this approach to multiple learnable vectors, we observe a natural progression toward a VQ-VAE-like model in continuous space. However, when the encoder outputs multiple vectors, the model degenerates into a discrete Autoencoder (VQ-AE), which combines image fragments without learning semantic representations. Our findings highlight the critical role of encoding space compactness and dispersion in generative modeling and provide insights into the intrinsic connections between VAEs and VQ-VAEs, offering a new perspective on their design and limitations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.