Papers
Topics
Authors
Recent
2000 character limit reached

HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Spikes (2507.17224v1)

Published 23 Jul 2025 in eess.SP, cs.AI, and q-bio.NC

Abstract: Extracellular recordings are brief voltage fluctuations recorded near neurons, widely used in neuroscience as the basis for decoding brain activity at single-neuron resolution. Spike sorting, which assigns each spike to its source neuron, is a critical step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular spike waveforms. By combining contrastive learning with a denoising autoencoder, HuiduRep learns latent representations that are robust to noise and drift. Built on HuiduRep, we develop a spike sorting pipeline that clusters spike representations without supervision. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness and the pipeline matches or outperforms state-of-the-art tools such as KiloSort4 and MountainSort5. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.