Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Evaluating Uncertainty and Quality of Visual Language Action-enabled Robots (2507.17049v1)

Published 22 Jul 2025 in cs.SE and cs.RO

Abstract: Visual Language Action (VLA) models are a multi-modal class of AI systems that integrate visual perception, natural language understanding, and action planning to enable agents to interpret their environment, comprehend instructions, and perform embodied tasks autonomously. Recently, significant progress has been made to advance this field. These kinds of models are typically evaluated through task success rates, which fail to capture the quality of task execution and the mode's confidence in its decisions. In this paper, we propose eight uncertainty metrics and five quality metrics specifically designed for VLA models for robotic manipulation tasks. We assess their effectiveness through a large-scale empirical study involving 908 successful task executions from three state-of-the-art VLA models across four representative robotic manipulation tasks. Human domain experts manually labeled task quality, allowing us to analyze the correlation between our proposed metrics and expert judgments. The results reveal that several metrics show moderate to strong correlation with human assessments, highlighting their utility for evaluating task quality and model confidence. Furthermore, we found that some of the metrics can discriminate between high-, medium-, and low-quality executions from unsuccessful tasks, which can be interesting when test oracles are not available. Our findings challenge the adequacy of current evaluation practices that rely solely on binary success rates and pave the way for improved real-time monitoring and adaptive enhancement of VLA-enabled robotic systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 7 tweets and received 155 likes.

Upgrade to Pro to view all of the tweets about this paper: