Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Confidence Optimization for Probabilistic Encoding (2507.16881v1)

Published 22 Jul 2025 in cs.LG and cs.AI

Abstract: Probabilistic encoding introduces Gaussian noise into neural networks, enabling a smooth transition from deterministic to uncertain states and enhancing generalization ability. However, the randomness of Gaussian noise distorts point-based distance measurements in classification tasks. To mitigate this issue, we propose a confidence optimization probabilistic encoding (CPE) method that improves distance reliability and enhances representation learning. Specifically, we refine probabilistic encoding with two key strategies: First, we introduce a confidence-aware mechanism to adjust distance calculations, ensuring consistency and reliability in probabilistic encoding classification tasks. Second, we replace the conventional KL divergence-based variance regularization, which relies on unreliable prior assumptions, with a simpler L2 regularization term to directly constrain variance. The method we proposed is model-agnostic, and extensive experiments on natural language classification tasks demonstrate that our method significantly improves performance and generalization on both the BERT and the RoBERTa model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.