Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Budget Allocation Policies for Real-Time Multi-Agent Path Finding (2507.16874v1)

Published 22 Jul 2025 in cs.MA, cs.AI, and cs.RO

Abstract: Multi-Agent Pathfinding (MAPF) is the problem of finding paths for a set of agents such that each agent reaches its desired destination while avoiding collisions with the other agents. Many MAPF solvers are designed to run offline, that is, first generate paths for all agents and then execute them. Real-Time MAPF (RT-MAPF) embodies a realistic MAPF setup in which one cannot wait until a complete path for each agent has been found before they start to move. Instead, planning and execution are interleaved, where the agents must commit to a fixed number of steps in a constant amount of computation time, referred to as the planning budget. Existing solutions to RT-MAPF iteratively call windowed versions of MAPF algorithms in every planning period, without explicitly considering the size of the planning budget. We address this gap and explore different policies for allocating the planning budget in windowed versions of standard MAPF algorithms, namely Prioritized Planning (PrP) and MAPF-LNS2. Our exploration shows that the baseline approach in which all agents draw from a shared planning budget pool is ineffective in over-constrained situations. Instead, policies that distribute the planning budget over the agents are able to solve more problems with a smaller makespan.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube