Papers
Topics
Authors
Recent
2000 character limit reached

Navigation through Non-Compact Symmetric Spaces: a mathematical perspective on Cartan Neural Networks (2507.16871v1)

Published 22 Jul 2025 in cs.LG and hep-th

Abstract: Recent work has identified non-compact symmetric spaces U/H as a promising class of homogeneous manifolds to develop a geometrically consistent theory of neural networks. An initial implementation of these concepts has been presented in a twin paper under the moniker of Cartan Neural Networks, showing both the feasibility and the performance of these geometric concepts in a machine learning context. The current paper expands on the mathematical structures underpinning Cartan Neural Networks, detailing the geometric properties of the layers and how the maps between layers interact with such structures to make Cartan Neural Networks covariant and geometrically interpretable. Together, these twin papers constitute a first step towards a fully geometrically interpretable theory of neural networks exploiting group-theoretic structures

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.