EVOLVE-X: Embedding Fusion and Language Prompting for User Evolution Forecasting on Social Media (2507.16847v1)
Abstract: Social media platforms serve as a significant medium for sharing personal emotions, daily activities, and various life events, ensuring individuals stay informed about the latest developments. From the initiation of an account, users progressively expand their circle of friends or followers, engaging actively by posting, commenting, and sharing content. Over time, user behavior on these platforms evolves, influenced by demographic attributes and the networks they form. In this study, we present a novel approach that leverages open-source models Llama-3-Instruct, Mistral-7B-Instruct, Gemma-7B-IT through prompt engineering, combined with GPT-2, BERT, and RoBERTa using a joint embedding technique, to analyze and predict the evolution of user behavior on social media over their lifetime. Our experiments demonstrate the potential of these models to forecast future stages of a user's social evolution, including network changes, future connections, and shifts in user activities. Experimental results highlight the effectiveness of our approach, with GPT-2 achieving the lowest perplexity (8.21) in a Cross-modal configuration, outperforming RoBERTa (9.11) and BERT, and underscoring the importance of leveraging Cross-modal configurations for superior performance. This approach addresses critical challenges in social media, such as friend recommendations and activity predictions, offering insights into the trajectory of user behavior. By anticipating future interactions and activities, this research aims to provide early warnings about potential negative outcomes, enabling users to make informed decisions and mitigate risks in the long term.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.