Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems (2507.16835v1)

Published 15 Jul 2025 in eess.AS and cs.CL

Abstract: Voice-based conversational AI systems increasingly rely on cascaded architectures combining speech-to-text (STT), LLMs, and text-to-speech (TTS) components. However, systematic evaluation of different component combinations in production settings remains understudied. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data from over 300,000 AI-conducted job interviews. We develop an automated evaluation framework using LLM-as-a-Judge to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of four production configurations reveals that Google STT paired with GPT-4.1 significantly outperforms alternatives in both conversational and technical quality metrics. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversational AI systems and contribute a validated evaluation methodology for voice-based interactions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.