Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Structural Effect and Spectral Enhancement of High-Dimensional Regularized Linear Discriminant Analysis (2507.16682v1)

Published 22 Jul 2025 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: Regularized linear discriminant analysis (RLDA) is a widely used tool for classification and dimensionality reduction, but its performance in high-dimensional scenarios is inconsistent. Existing theoretical analyses of RLDA often lack clear insight into how data structure affects classification performance. To address this issue, we derive a non-asymptotic approximation of the misclassification rate and thus analyze the structural effect and structural adjustment strategies of RLDA. Based on this, we propose the Spectral Enhanced Discriminant Analysis (SEDA) algorithm, which optimizes the data structure by adjusting the spiked eigenvalues of the population covariance matrix. By developing a new theoretical result on eigenvectors in random matrix theory, we derive an asymptotic approximation on the misclassification rate of SEDA. The bias correction algorithm and parameter selection strategy are then obtained. Experiments on synthetic and real datasets show that SEDA achieves higher classification accuracy and dimensionality reduction compared to existing LDA methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 10 likes.