LLM-Enhanced Reranking for Complementary Product Recommendation (2507.16237v1)
Abstract: Complementary product recommendation, which aims to suggest items that are used together to enhance customer value, is a crucial yet challenging task in e-commerce. While existing graph neural network (GNN) approaches have made significant progress in capturing complex product relationships, they often struggle with the accuracy-diversity tradeoff, particularly for long-tail items. This paper introduces a model-agnostic approach that leverages LLMs to enhance the reranking of complementary product recommendations. Unlike previous works that use LLMs primarily for data preprocessing and graph augmentation, our method applies LLM-based prompting strategies directly to rerank candidate items retrieved from existing recommendation models, eliminating the need for model retraining. Through extensive experiments on public datasets, we demonstrate that our approach effectively balances accuracy and diversity in complementary product recommendations, with at least 50% lift in accuracy metrics and 2% lift in diversity metrics on average for the top recommended items across datasets.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.