Papers
Topics
Authors
Recent
2000 character limit reached

LENS-DF: Deepfake Detection and Temporal Localization for Long-Form Noisy Speech (2507.16220v1)

Published 22 Jul 2025 in cs.SD and cs.CR

Abstract: This study introduces LENS-DF, a novel and comprehensive recipe for training and evaluating audio deepfake detection and temporal localization under complicated and realistic audio conditions. The generation part of the recipe outputs audios from the input dataset with several critical characteristics, such as longer duration, noisy conditions, and containing multiple speakers, in a controllable fashion. The corresponding detection and localization protocol uses models. We conduct experiments based on self-supervised learning front-end and simple back-end. The results indicate that models trained using data generated with LENS-DF consistently outperform those trained via conventional recipes, demonstrating the effectiveness and usefulness of LENS-DF for robust audio deepfake detection and localization. We also conduct ablation studies on the variations introduced, investigating their impact on and relevance to realistic challenges in the field.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.