Papers
Topics
Authors
Recent
2000 character limit reached

Expert-Guided LLM Reasoning for Battery Discovery: From AI-Driven Hypothesis to Synthesis and Characterization (2507.16110v1)

Published 21 Jul 2025 in cs.AI and cs.LG

Abstract: LLMs leverage chain-of-thought (CoT) techniques to tackle complex problems, representing a transformative breakthrough in AI. However, their reasoning capabilities have primarily been demonstrated in solving math and coding problems, leaving their potential for domain-specific applications-such as battery discovery-largely unexplored. Inspired by the idea that reasoning mirrors a form of guided search, we introduce ChatBattery, a novel agentic framework that integrates domain knowledge to steer LLMs toward more effective reasoning in materials design. Using ChatBattery, we successfully identify, synthesize, and characterize three novel lithium-ion battery cathode materials, which achieve practical capacity improvements of 28.8%, 25.2%, and 18.5%, respectively, over the widely used cathode material, LiNi0.8Mn0.1Co0.1O2 (NMC811). Beyond this discovery, ChatBattery paves a new path by showing a successful LLM-driven and reasoning-based platform for battery materials invention. This complete AI-driven cycle-from design to synthesis to characterization-demonstrates the transformative potential of AI-driven reasoning in revolutionizing materials discovery.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.