Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generative AI Models for Learning Flow Maps of Stochastic Dynamical Systems in Bounded Domains (2507.15990v1)

Published 17 Jul 2025 in stat.ML and cs.LG

Abstract: Simulating stochastic differential equations (SDEs) in bounded domains, presents significant computational challenges due to particle exit phenomena, which requires accurate modeling of interior stochastic dynamics and boundary interactions. Despite the success of machine learning-based methods in learning SDEs, existing learning methods are not applicable to SDEs in bounded domains because they cannot accurately capture the particle exit dynamics. We present a unified hybrid data-driven approach that combines a conditional diffusion model with an exit prediction neural network to capture both interior stochastic dynamics and boundary exit phenomena. Our ML model consists of two major components: a neural network that learns exit probabilities using binary cross-entropy loss with rigorous convergence guarantees, and a training-free diffusion model that generates state transitions for non-exiting particles using closed-form score functions. The two components are integrated through a probabilistic sampling algorithm that determines particle exit at each time step and generates appropriate state transitions. The performance of the proposed approach is demonstrated via three test cases: a one-dimensional simplified problem for theoretical verification, a two-dimensional advection-diffusion problem in a bounded domain, and a three-dimensional problem of interest to magnetically confined fusion plasmas.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: