Papers
Topics
Authors
Recent
2000 character limit reached

From Reasoning to Super-Intelligence: A Search-Theoretic Perspective (2507.15865v1)

Published 13 Jul 2025 in cs.AI

Abstract: Chain-of-Thought (CoT) reasoning has emerged as a powerful tool for enhancing the problem-solving capabilities of LLMs. However, the theoretical foundations of learning from CoT data remain underdeveloped, and existing approaches -- such as Supervised Fine-Tuning (SFT), Reinforcement Learning (RL), Tree-of-Thoughts (ToT), and Monte Carlo Tree Search (MCTS) -- often fail on complex reasoning tasks. In this work, we identify core obstacles that hinder effective CoT learning, including distribution drift, lack of embedded search, and exponential inference costs. We introduce the Diligent Learner, a new learning paradigm that explicitly models reasoning as a depth-first search guided by a validator and supports backtracking upon failure. Under two mild and realistic assumptions, we prove that the Diligent Learner can efficiently learn from CoT data while existing methods fail to do so. This framework offers a path toward building scalable and reliable reasoning systems trained on naturally occurring, incomplete data -- paving the way for the development of Large Reasoning Models (LRMs) with robust, interpretable problem-solving abilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 75 likes about this paper.