Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers (2507.15833v1)

Published 21 Jul 2025 in cs.RO, cs.AI, and cs.CV

Abstract: Human vision is a highly active process driven by gaze, which directs attention and fixation to task-relevant regions and dramatically reduces visual processing. In contrast, robot learning systems typically rely on passive, uniform processing of raw camera images. In this work, we explore how incorporating human-like active gaze into robotic policies can enhance both efficiency and performance. We build on recent advances in foveated image processing and apply them to an Active Vision robot system that emulates both human head movement and eye tracking. Extending prior work on the AV-ALOHA robot simulation platform, we introduce a framework for simultaneously collecting eye-tracking data and robot demonstrations from a human operator as well as a simulation benchmark and dataset for training robot policies that incorporate human gaze. Given the widespread use of Vision Transformers (ViTs) in robot learning, we integrate gaze information into ViTs using a foveated patch tokenization scheme inspired by recent work in image segmentation. Compared to uniform patch tokenization, this significantly reduces the number of tokens-and thus computation-without sacrificing visual fidelity near regions of interest. We also explore two approaches to gaze imitation and prediction from human data. The first is a two-stage model that predicts gaze to guide foveation and action; the second integrates gaze into the action space, allowing the policy to jointly predict gaze and actions end-to-end. Our results show that our method for foveated robot vision not only drastically reduces computational overhead, but also improves performance for high precision tasks and robustness to unseen distractors. Together, these findings suggest that human-inspired visual processing offers a useful inductive bias for robotic vision systems. https://ian-chuang.github.io/gaze-av-aloha/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.