Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Interleaved LLM and Motion Planning for Generalized Multi-Object Collection in Large Scene Graphs (2507.15782v1)

Published 21 Jul 2025 in cs.RO

Abstract: Household robots have been a longstanding research topic, but they still lack human-like intelligence, particularly in manipulating open-set objects and navigating large environments efficiently and accurately. To push this boundary, we consider a generalized multi-object collection problem in large scene graphs, where the robot needs to pick up and place multiple objects across multiple locations in a long mission of multiple human commands. This problem is extremely challenging since it requires long-horizon planning in a vast action-state space under high uncertainties. To this end, we propose a novel interleaved LLM and motion planning algorithm Inter-LLM. By designing a multimodal action cost similarity function, our algorithm can both reflect the history and look into the future to optimize plans, striking a good balance of quality and efficiency. Simulation experiments demonstrate that compared with latest works, our algorithm improves the overall mission performance by 30% in terms of fulfilling human commands, maximizing mission success rates, and minimizing mission costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.