Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CoLD: Counterfactually-Guided Length Debiasing for Process Reward Models (2507.15698v1)

Published 21 Jul 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Process Reward Models (PRMs) play a central role in evaluating and guiding multi-step reasoning in LLMs, especially for mathematical problem solving. However, we identify a pervasive length bias in existing PRMs: they tend to assign higher scores to longer reasoning steps, even when the semantic content and logical validity are unchanged. This bias undermines the reliability of reward predictions and leads to overly verbose outputs during inference. To address this issue, we propose CoLD(Counterfactually-Guided Length Debiasing), a unified framework that mitigates length bias through three components: an explicit length-penalty adjustment, a learned bias estimator trained to capture spurious length-related signals, and a joint training strategy that enforces length-invariance in reward predictions. Our approach is grounded in counterfactual reasoning and informed by causal graph analysis. Extensive experiments on MATH500 and GSM-Plus show that CoLD consistently reduces reward-length correlation, improves accuracy in step selection, and encourages more concise, logically valid reasoning. These results demonstrate the effectiveness and practicality of CoLD in improving the fidelity and robustness of PRMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube