Visual-Language Model Knowledge Distillation Method for Image Quality Assessment (2507.15680v1)
Abstract: Image Quality Assessment (IQA) is a core task in computer vision. Multimodal methods based on vision-LLMs, such as CLIP, have demonstrated exceptional generalization capabilities in IQA tasks. To address the issues of excessive parameter burden and insufficient ability to identify local distorted features in CLIP for IQA, this study proposes a visual-LLM knowledge distillation method aimed at guiding the training of models with architectural advantages using CLIP's IQA knowledge. First, quality-graded prompt templates were designed to guide CLIP to output quality scores. Then, CLIP is fine-tuned to enhance its capabilities in IQA tasks. Finally, a modality-adaptive knowledge distillation strategy is proposed to achieve guidance from the CLIP teacher model to the student model. Our experiments were conducted on multiple IQA datasets, and the results show that the proposed method significantly reduces model complexity while outperforming existing IQA methods, demonstrating strong potential for practical deployment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.