Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MinCD-PnP: Learning 2D-3D Correspondences with Approximate Blind PnP (2507.15257v1)

Published 21 Jul 2025 in cs.CV

Abstract: Image-to-point-cloud (I2P) registration is a fundamental problem in computer vision, focusing on establishing 2D-3D correspondences between an image and a point cloud. The differential perspective-n-point (PnP) has been widely used to supervise I2P registration networks by enforcing the projective constraints on 2D-3D correspondences. However, differential PnP is highly sensitive to noise and outliers in the predicted correspondences. This issue hinders the effectiveness of correspondence learning. Inspired by the robustness of blind PnP against noise and outliers in correspondences, we propose an approximated blind PnP based correspondence learning approach. To mitigate the high computational cost of blind PnP, we simplify blind PnP to an amenable task of minimizing Chamfer distance between learned 2D and 3D keypoints, called MinCD-PnP. To effectively solve MinCD-PnP, we design a lightweight multi-task learning module, named as MinCD-Net, which can be easily integrated into the existing I2P registration architectures. Extensive experiments on 7-Scenes, RGBD-V2, ScanNet, and self-collected datasets demonstrate that MinCD-Net outperforms state-of-the-art methods and achieves a higher inlier ratio (IR) and registration recall (RR) in both cross-scene and cross-dataset settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.