Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Input Reduction Enhanced LLM-based Program Repair (2507.15251v1)

Published 21 Jul 2025 in cs.SE

Abstract: LLMs have shown great potential in Automated Program Repair (APR). Test inputs, being crucial for reasoning the root cause of failures, are always included in the prompt for LLM-based APR. Unfortunately, LLMs struggle to retain key information in long prompts. When the test inputs are extensive in the prompt, this may trigger the "lost-in-the-middle" issue, compromising repair performance. To address this, we propose ReduceFix, an LLM-based APR approach with a built-in component that automatically reduces test inputs while retaining their failure-inducing behavior. ReduceFix prompts an LLM to generate a reducer that minimizes failure-inducing test inputs without human effort, and then feeds the reduced failure-inducing inputs to guide patch generation. For targeted evaluation, we constructed LFTBench, the first long-input APR benchmark with 200 real bugs from 20 programming tasks, each paired with a failure-inducing input whose median size is 1 MB. On this benchmark, ReduceFix shrinks inputs by 89.1% on average and improves overall pass@10 by up to 53.8% relative to a prompt that includes the original test, and by 17.6% compared with omitting the test entirely. Adding the same reduction step to ChatRepair increases its fix rate by 21.3% without other changes. Ablation studies further highlight the impact of input length and compressed failure information on repair success. These results underscore that automatically reducing failing inputs is a practical and powerful complement to LLM-based APR, significantly improving its scalability and effectiveness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube