Papers
Topics
Authors
Recent
2000 character limit reached

Resonant-Tunnelling Diode Reservoir Computing System for Image Recognition (2507.15158v1)

Published 20 Jul 2025 in cs.LG and physics.app-ph

Abstract: As artificial intelligence continues to push into real-time, edge-based and resource-constrained environments, there is an urgent need for novel, hardware-efficient computational models. In this study, we present and validate a neuromorphic computing architecture based on resonant-tunnelling diodes (RTDs), which exhibit the nonlinear characteristics ideal for physical reservoir computing (RC). We theoretically formulate and numerically implement an RTD-based RC system and demonstrate its effectiveness on two image recognition benchmarks: handwritten digit classification and object recognition using the Fruit~360 dataset. Our results show that this circuit-level architecture delivers promising performance while adhering to the principles of next-generation RC -- eliminating random connectivity in favour of a deterministic nonlinear transformation of input signals.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.