Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Filling the Gap: Is Commonsense Knowledge Generation useful for Natural Language Inference? (2507.15100v1)

Published 20 Jul 2025 in cs.CL and cs.AI

Abstract: Natural Language Inference (NLI) is the task of determining the semantic entailment of a premise for a given hypothesis. The task aims to develop systems that emulate natural human inferential processes where commonsense knowledge plays a major role. However, existing commonsense resources lack sufficient coverage for a variety of premise-hypothesis pairs. This study explores the potential of LLMs as commonsense knowledge generators for NLI along two key dimensions: their reliability in generating such knowledge and the impact of that knowledge on prediction accuracy. We adapt and modify existing metrics to assess LLM factuality and consistency in generating in this context. While explicitly incorporating commonsense knowledge does not consistently improve overall results, it effectively helps distinguish entailing instances and moderately improves distinguishing contradictory and neutral inferences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.