Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Byzantine-Robust Decentralized Coordination of LLM Agents (2507.14928v1)

Published 20 Jul 2025 in cs.DC and cs.AI

Abstract: Collaboration among multiple LLM agents is a promising approach to overcome inherent limitations of single-agent systems, such as hallucinations and single points of failure. As LLM agents are increasingly deployed on open blockchain platforms, multi-agent systems capable of tolerating malicious (Byzantine) agents have become essential. Recent Byzantine-robust multi-agent systems typically rely on leader-driven coordination, which suffers from two major drawbacks. First, they are inherently vulnerable to targeted attacks against the leader. If consecutive leaders behave maliciously, the system repeatedly fails to achieve consensus, forcing new consensus rounds, which is particularly costly given the high latency of LLM invocations. Second, an underperforming proposal from the leader can be accepted as the final answer even when higher-quality alternatives are available, as existing methods finalize the leader's proposal once it receives a quorum of votes. To address these issues, we propose DecentLLMs, a novel decentralized consensus approach for multi-agent LLM systems, where worker agents generate answers concurrently and evaluator agents independently score and rank these answers to select the best available one. This decentralized architecture enables faster consensus despite the presence of Byzantine agents and consistently selects higher-quality answers through Byzantine-robust aggregation techniques. Experimental results demonstrate that DecentLLMs effectively tolerates Byzantine agents and significantly improves the quality of selected answers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube