Papers
Topics
Authors
Recent
2000 character limit reached

A Privacy-Centric Approach: Scalable and Secure Federated Learning Enabled by Hybrid Homomorphic Encryption (2507.14853v1)

Published 20 Jul 2025 in cs.CR and cs.LG

Abstract: Federated Learning (FL) enables collaborative model training without sharing raw data, making it a promising approach for privacy-sensitive domains. Despite its potential, FL faces significant challenges, particularly in terms of communication overhead and data privacy. Privacy-preserving Techniques (PPTs) such as Homomorphic Encryption (HE) have been used to mitigate these concerns. However, these techniques introduce substantial computational and communication costs, limiting their practical deployment. In this work, we explore how Hybrid Homomorphic Encryption (HHE), a cryptographic protocol that combines symmetric encryption with HE, can be effectively integrated with FL to address both communication and privacy challenges, paving the way for scalable and secure decentralized learning system.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.