Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Repository-Level Code Generation with Call Chain-Aware Multi-View Context

Published 20 Jul 2025 in cs.SE | (2507.14791v1)

Abstract: Repository-level code generation aims to generate code within the context of a specified repository. Existing approaches typically employ retrieval-augmented generation (RAG) techniques to provide LLMs with relevant contextual information extracted from the repository. However, these approaches often struggle with effectively identifying truly relevant contexts that capture the rich semantics of the repository, and their contextual perspectives remains narrow. Moreover, most approaches fail to account for the structural relationships in the retrieved code during prompt construction, hindering the LLM's ability to accurately interpret the context. To address these issues, we propose RepoScope, which leverages call chain-aware multi-view context for repository-level code generation. RepoScope constructs a Repository Structural Semantic Graph (RSSG) and retrieves a comprehensive four-view context, integrating both structural and similarity-based contexts. We propose a novel call chain prediction method that utilizes the repository's structural semantics to improve the identification of callees in the target function. Additionally, we present a structure-preserving serialization algorithm for prompt construction, ensuring the coherence of the context for the LLM. Notably, RepoScope relies solely on static analysis, eliminating the need for additional training or multiple LLM queries, thus ensuring both efficiency and generalizability. Evaluation on widely-used repository-level code generation benchmarks (CoderEval and DevEval) demonstrates that RepoScope outperforms state-of-the-art methods, achieving up to a 36.35% relative improvement in pass@1 scores. Further experiments emphasize RepoScope's potential to improve code generation across different tasks and its ability to integrate effectively with existing approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.