Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards a Proactive Autoscaling Framework for Data Stream Processing at the Edge using GRU and Transfer Learning (2507.14597v1)

Published 19 Jul 2025 in cs.DC, cs.CV, cs.LG, and cs.PF

Abstract: Processing data at high speeds is becoming increasingly critical as digital economies generate enormous data. The current paradigms for timely data processing are edge computing and data stream processing (DSP). Edge computing places resources closer to where data is generated, while stream processing analyzes the unbounded high-speed data in motion. However, edge stream processing faces rapid workload fluctuations, complicating resource provisioning. Inadequate resource allocation leads to bottlenecks, whereas excess allocation results in wastage. Existing reactive methods, such as threshold-based policies and queuing theory scale only after performance degrades, potentially violating SLAs. Although reinforcement learning (RL) offers a proactive approach through agents that learn optimal runtime adaptation policies, it requires extensive simulation. Furthermore, predictive machine learning models face online distribution and concept drift that minimize their accuracy. We propose a three-step solution to the proactive edge stream processing autoscaling problem. Firstly, a GRU neural network forecasts the upstream load using real-world and synthetic DSP datasets. Secondly, a transfer learning framework integrates the predictive model into an online stream processing system using the DTW algorithm and joint distribution adaptation to handle the disparities between offline and online domains. Finally, a horizontal autoscaling module dynamically adjusts the degree of operator parallelism, based on predicted load while considering edge resource constraints. The lightweight GRU model for load predictions recorded up to 1.3\% SMAPE value on a real-world data set. It outperformed CNN, ARIMA, and Prophet on the SMAPE and RMSE evaluation metrics, with lower training time than the computationally intensive RL models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.