CRAFT: A Neuro-Symbolic Framework for Visual Functional Affordance Grounding (2507.14426v1)
Abstract: We introduce CRAFT, a neuro-symbolic framework for interpretable affordance grounding, which identifies the objects in a scene that enable a given action (e.g., "cut"). CRAFT integrates structured commonsense priors from ConceptNet and LLMs with visual evidence from CLIP, using an energy-based reasoning loop to refine predictions iteratively. This process yields transparent, goal-driven decisions to ground symbolic and perceptual structures. Experiments in multi-object, label-free settings demonstrate that CRAFT enhances accuracy while improving interpretability, providing a step toward robust and trustworthy scene understanding.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.