Error-Aware Curriculum Learning for Biomedical Relation Classification (2507.14374v1)
Abstract: Relation Classification (RC) in biomedical texts is essential for constructing knowledge graphs and enabling applications such as drug repurposing and clinical decision-making. We propose an error-aware teacher--student framework that improves RC through structured guidance from a LLM (GPT-4o). Prediction failures from a baseline student model are analyzed by the teacher to classify error types, assign difficulty scores, and generate targeted remediations, including sentence rewrites and suggestions for KG-based enrichment. These enriched annotations are used to train a first student model via instruction tuning. This model then annotates a broader dataset with difficulty scores and remediation-enhanced inputs. A second student is subsequently trained via curriculum learning on this dataset, ordered by difficulty, to promote robust and progressive learning. We also construct a heterogeneous biomedical knowledge graph from PubMed abstracts to support context-aware RC. Our approach achieves new state-of-the-art performance on 4 of 5 PPI datasets and the DDI dataset, while remaining competitive on ChemProt.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.