Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RaMen: Multi-Strategy Multi-Modal Learning for Bundle Construction (2507.14361v1)

Published 18 Jul 2025 in cs.IR

Abstract: Existing studies on bundle construction have relied merely on user feedback via bipartite graphs or enhanced item representations using semantic information. These approaches fail to capture elaborate relations hidden in real-world bundle structures, resulting in suboptimal bundle representations. To overcome this limitation, we propose RaMen, a novel method that provides a holistic multi-strategy approach for bundle construction. RaMen utilizes both intrinsic (characteristics) and extrinsic (collaborative signals) information to model bundle structures through Explicit Strategy-aware Learning (ESL) and Implicit Strategy-aware Learning (ISL). ESL employs task-specific attention mechanisms to encode multi-modal data and direct collaborative relations between items, thereby explicitly capturing essential bundle features. Moreover, ISL computes hyperedge dependencies and hypergraph message passing to uncover shared latent intents among groups of items. Integrating diverse strategies enables RaMen to learn more comprehensive and robust bundle representations. Meanwhile, Multi-strategy Alignment & Discrimination module is employed to facilitate knowledge transfer between learning strategies and ensure discrimination between items/bundles. Extensive experiments demonstrate the effectiveness of RaMen over state-of-the-art models on various domains, justifying valuable insights into complex item set problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.