Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-Granular Discretization for Interpretable Generalization in Precise Cyberattack Identification (2507.14223v1)

Published 16 Jul 2025 in cs.CR and cs.AI

Abstract: Explainable intrusion detection systems (IDS) are now recognized as essential for mission-critical networks, yet most "XAI" pipelines still bolt an approximate explainer onto an opaque classifier, leaving analysts with partial and sometimes misleading insights. The Interpretable Generalization (IG) mechanism, published in IEEE Transactions on Information Forensics and Security, eliminates that bottleneck by learning coherent patterns - feature combinations unique to benign or malicious traffic - and turning them into fully auditable rules. IG already delivers outstanding precision, recall, and AUC on NSL-KDD, UNSW-NB15, and UKM-IDS20, even when trained on only 10% of the data. To raise precision further without sacrificing transparency, we introduce Multi-Granular Discretization (IG-MD), which represents every continuous feature at several Gaussian-based resolutions. On UKM-IDS20, IG-MD lifts precision by greater than or equal to 4 percentage points across all nine train-test splits while preserving recall approximately equal to 1.0, demonstrating that a single interpretation-ready model can scale across domains without bespoke tuning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.