A Comprehensive Benchmark for Electrocardiogram Time-Series (2507.14206v1)
Abstract: Electrocardiogram~(ECG), a key bioelectrical time-series signal, is crucial for assessing cardiac health and diagnosing various diseases. Given its time-series format, ECG data is often incorporated into pre-training datasets for large-scale time-series model training. However, existing studies often overlook its unique characteristics and specialized downstream applications, which differ significantly from other time-series data, leading to an incomplete understanding of its properties. In this paper, we present an in-depth investigation of ECG signals and establish a comprehensive benchmark, which includes (1) categorizing its downstream applications into four distinct evaluation tasks, (2) identifying limitations in traditional evaluation metrics for ECG analysis, and introducing a novel metric; (3) benchmarking state-of-the-art time-series models and proposing a new architecture. Extensive experiments demonstrate that our proposed benchmark is comprehensive and robust. The results validate the effectiveness of the proposed metric and model architecture, which establish a solid foundation for advancing research in ECG signal analysis.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.