Papers
Topics
Authors
Recent
2000 character limit reached

KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models (2507.14032v1)

Published 18 Jul 2025 in cs.AI

Abstract: Ontology Matching (OM) is a cornerstone task of semantic interoperability, yet existing systems often rely on handcrafted rules or specialized models with limited adaptability. We present KROMA, a novel OM framework that harnesses LLMs within a Retrieval-Augmented Generation (RAG) pipeline to dynamically enrich the semantic context of OM tasks with structural, lexical, and definitional knowledge. To optimize both performance and efficiency, KROMA integrates a bisimilarity-based concept matching and a lightweight ontology refinement step, which prune candidate concepts and substantially reduce the communication overhead from invoking LLMs. Through experiments on multiple benchmark datasets, we show that integrating knowledge retrieval with context-augmented LLMs significantly enhances ontology matching, outperforming both classic OM systems and cutting-edge LLM-based approaches while keeping communication overhead comparable. Our study highlights the feasibility and benefit of the proposed optimization techniques (targeted knowledge retrieval, prompt enrichment, and ontology refinement) for ontology matching at scale.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.