Evaluation of Human Visual Privacy Protection: A Three-Dimensional Framework and Benchmark Dataset (2507.13981v1)
Abstract: Recent advances in AI-powered surveillance have intensified concerns over the collection and processing of sensitive personal data. In response, research has increasingly focused on privacy-by-design solutions, raising the need for objective techniques to evaluate privacy protection. This paper presents a comprehensive framework for evaluating visual privacy-protection methods across three dimensions: privacy, utility, and practicality. In addition, it introduces HR-VISPR, a publicly available human-centric dataset with biometric, soft-biometric, and non-biometric labels to train an interpretable privacy metric. We evaluate 11 privacy protection methods, ranging from conventional techniques to advanced deep-learning methods, through the proposed framework. The framework differentiates privacy levels in alignment with human visual perception, while highlighting trade-offs between privacy, utility, and practicality. This study, along with the HR-VISPR dataset, serves as an insightful tool and offers a structured evaluation framework applicable across diverse contexts.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.