Papers
Topics
Authors
Recent
2000 character limit reached

DistFlow: A Fully Distributed RL Framework for Scalable and Efficient LLM Post-Training (2507.13833v1)

Published 18 Jul 2025 in cs.DC

Abstract: Reinforcement learning (RL) has become the pivotal post-training technique for LLM. Effectively scaling reinforcement learning is now the key to unlocking advanced reasoning capabilities and ensuring safe, goal-aligned behavior in the most powerful LLMs. Mainstream frameworks usually employ a hybrid-controller architecture where a single-controller dispatches the overall execution logic and manages overall data transfer and the multi-controller executes distributed computation. For large-scale reinforcement learning, minor load imbalances can introduce significant bottlenecks, ultimately constraining the scalability of the system. To address this limitation, we introduce DistFlow, a novel, fully distributed RL framework designed to break scaling barrier. We adopt a multi-controller paradigm that dispatches data transfer and execution tasks to all workers, which eliminates the centralized node. This allows each worker to operate independently, leading to near-linear scalability up to thousands of GPUs and dramatic efficiency gains. Furthermore, our architecture decouples resource configuration from execution logic, allowing each worker to have a unique execution flow, offering significant flexibility for rapid and cost-effective algorithmic experimentation. Extensive experiments show that DistFlow achieves excellent linear scalability and up to a 7x end-to-end throughput improvement over state-of-the-art (SOTA) frameworks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.